Shuttle Valve Design Team #17

Date November 21th, 2013

Group Members

Ryan Laney – Team Leader

Billy Ernst – Team Webmaster

Samantha Zeidel – Team Treasurer

Instructor

Dr. Kamal Amin

Sponsor

Verdicorp Inc. Robert Parsons

<u>Faculty Advisor</u> Dr. A. Krothapalli

Project Overview

- Verdicorp Environmental Technologies has developed a revolutionary Organic Rankine Cycle (ORC)
- ORC uses waste heat from a low grade source and converts it to useful power
- The ORC systems have somewhat low efficiency (~10-14%); Special concern within the company to maximize this efficiency in any way possible
- ORC is cable of producing $\sim 125 \text{ kW}$
- Parasitic losses consume ~20 kW (Pump ~10 kW)
- Senior Design Team 17 has been tasked with increasing the efficiency of the system (Removal and replacement of the pump)

Project Objectives

- Design a shuttle valve system to replace the pump within the ORC
- Maintain the continuous flow of liquid within the ORC (\sim 3 gpm)
- Use solenoid valves with the aid of gravity to adjust the pressure inside the vessels
- Transfer the liquid in the system from the low pressure side to the high pressure side
- Minimize the parasitic losses in the system (electrical consumption)
- Confirm on a final design concept by late-October 2013
- Construct a prototype of the final design during Spring 2014

Presented by: Ryan Laney

Final Design Concept

Final Design Concept

• Execution of Holding Tank 1

• Execution of Holding Tank 2

Presented by: Billy Ernst

Relevant Equations for Pipe Flows

• Modified Bernoulli Equation

•
$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + \frac{fLV^2}{D2g} + \sum K \frac{V^2}{2g}$$

• $\Delta P_L = \frac{\left(\frac{fL}{D} + K_t\right)V^2}{2g}$

- $\frac{\int L}{D}$ term applies to friction in piping
- K term applies to minor losses in fittings

PIPE-FLO Software Calculations

- Boiler to Condenser
 - dZ = 58 in. (Hydrostatic Head)
 - Minor Losses (Two 90° Elbows) Major losses (L = 8.562 ft.)
 - With an internal pressure in the boiler of 50 psi and using ½" PVC, the flow rate will be 39.04 GPM
 - A throttling valve will be used to model the turbo expander and provide the pressure drop and decrease the flow rate to the required 3 GPM

PIPE-FLO Software Calculations

• Condenser to Holding Tanks

- Flow rate will be gravity driven
- dZ = 22 in. (Hydrostatic Head)
- Minor Losses (One 90° Elbow, 1 Tee, One Check-Valve) (To each tank)
- Using ½" PVC, GPM (max) = 2.86 GPM (Not sufficient for design flow rate of 3 GPM)
- Using $\frac{3}{4}$ " PVC, GPM (max) = 5.33 GPM Therefore $\frac{3}{4}$ " PVC must be used

PIPE-FLO Software Calculations

• Holding Tanks to Boiler

- Flow rate will be gravity driven
- dZ = 36 in. (Hydrostatic Head)
- Minor Losses (Two 90° Elbows, 1 Tee, One Check Valve)(To each tank)
- Using $\frac{1}{2}$ " PVC, GPM (max) = 4.22 GPM Therefore $\frac{1}{2}$ " PVC must be used along with a throttling valve to restrict the flow down to 3 GPM

Components of Design

• Boiler

- Pittsburgh Automotive 6.25 Gallon Oil Extractor
- Pressurized vessel in our system (50 psi)

• Condenser

- Ace/DenHartog 5 Gallon Flat Bottom Utility Tank
- Thickness: 1/4 in. (Allowing for modifications)
- Non-pressurized vessel in our system

Holding Tanks

- 6 in. Acrylic Tubes (Walls)
- 2 3 in. Acrylic Sheet (End Caps)
- Needs to be constructed by the team
- Pressurized vessel in our system (50 psi)

Presented by: Samantha Zeidel

Manufacturing/Machining Approaches

• Boiler

- All modifications will be done at Verdicorp machine shop
- Top of oil extractor must be modified
- Components must be removed to insert ½ in. PVC and two 1/8 in. Stainless Steel tubing
- Bottom of tank must be modified to insert ½ in. PVC from holding tanks

• Condenser

- All modifications will be done at Verdicorp machine shop
- Holes must be cut into top and bottom of condenser for pipe inlets/outlets

Holding tanks

- Will be made from 6 in. Acrylic tubes (Walls) and 2-3 in. Acrylic sheet (End Caps)
- Top and Bottom end caps will be threaded and attached to the ends of the tubes
- All holes for valves and switches will be drilled and threaded by machinist at Verdicorp

Components of Design

Control Valves

- Parker Pneumatic Single Solenoid, 3-way, 2-position, NC
- Air Control Valve; Port Size: 1/8 in. NPT
- Voltage: 24 VDC

• Sensor

- Gems LS-300 Series Multi-Point Level Switch
- Simple and efficient way of monitoring water levels

• Relay

- Provided by Verdicorp
- Voltage: 24 VDC (Control valve voltage)

Presented by: Samantha Zeidel

Components of Design

- Piping
 - Water Pipes: ¹/₂ in. and ³/₄ in. PVC Schedule 40
 - Pressure Pipes: 1/8 in. Stainless Steel Tubing
- Throttle Valves
 - Homewerks Worldwide 1/2 in. and 3/4 in. Brass FPTxFPT Gate Valve
 - Threaded connection, Max Pressure = 125 psi
- Check Valves
 - Homewerks Worldwide ¹/₂ in. and ³/₄ in. Lead Free Brass FPTxFPT Swing Check Valve
 - Threaded connection, Max Pressure = 200 psi

• Pipe Fittings

- Mueller Streamline $\frac{1}{2}$ in. and $\frac{3}{4}$ in. PVC SCH 40 SxS 90° Elbow
- Mueller Streamline ¹/₂ in. and ³/₄ in. PVC SCH 40 SxSxS Tee

Presented by: Samantha Zeidel

Project Procurement

Part #	Component	Product Description	Quantity	List Price	Status	Part #	Component	Product Description	Quantity	List Price	Status
1	Boiler	6.25 Gallon Oil Extractor	1	\$134.99	Ordered	10	Relay	PENDING DECISION	2	N/A	Not Purchased
2	Condenser	5 Gallon Flat Bottom Utility Tank	1	\$37.99	Ordered	11	Pressure Line	1/8" x 6' Stainless Steel Tubing	~11 ft.	\$23.70	Not Purchased
3	Holding Tanks	NEEDS TO BE MANUFACTURED Clear Acrylic Tubes/Sheet	2	N/A	Not Purchased	12	Water Pipe 1	1/2" x 10' PVC Schedule 40 Plain-End Pipe	~16 ft.	\$1.81	Not Purchased
4	Throttle Valve 1	1/2" Brass FBTxFBT Gate Valve	2	\$6.35	Not Purchased	13	Water Pipe 2	3/4" x 10' PVC Schedule 40 Plain-End Pipe	~6 ft.	\$2.28	Not Purchased
5	Throttle Valve 2	3/4" Brass FBTxFBT Gate Valve	1	\$7.73	Not Purchased						
						14	Water Pipe Elbow 1	1/2" PVC Pipe 90° Elbow	5	\$0.46	Not Purchased
6	Check Valve 1 1,	1/2" Lead Free Brass FPTxFPT Swing Check Valve	2	\$7.02	Not Purchased						
						15	Water Pipe	3/4" PVC Pipe 90° Elbow	2	\$0.46	Not Purchased
7	Check Valve 2	3/4" Lead Free Brass FPTxFPT	2	\$9.41	Not Purchased		Elbow 2				
		Swillg Check valve				16	Water Pipe	1/2" PVC Pipe Tee	1	\$0.47	Not Purchased
8	Control Valve	Parker Air Control Valve	2	\$51.95	Not Purchased		Tee 1				
		Single Solenoid, 3-way, 2-pos, 1/8" NPT				17	Water Pipe Tee 2	3/4" PVC Pipe Tee	1	\$0.47	Not Purchased
9	Sensor	LS-300 Series Multi-Point Level Switch (QUESTIONABLE)	2	\$163.60	Not Purchased	18	Air Compressor	Porter-Cable 3.5 Gallon 135 psi Pancake Compressor	1	\$99.88	Not Purchased

Project Summary

- Final Design
 - Final design concept has been finalized
 - Modifications may need to be made after prototyping and testing has been completed
- Project Components
 - All components have been selected and will be used pending that the prototype works sufficiently during testing
- Next Steps:
 - We will begin purchasing of components and material immediately
 - Continue to analyze project and write final report
 - Start building and testing individual portions of the system before building entire system starting in January, 2013

• Any Questions??